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Abstract, A model of unsupervised leaming is studied, where the environment provides N- 
dimensional input e m p l e s  that are drawn from two overlapping Gaussian clouds. We consider 
the optimization of two different objective functions: the search for the direction of the largest 
variance in the data and the largest separating gap (stability) between clusters of examples 
respectively. 

By means of a statistical-mechanics analysis, we investigafe how well the underlying 
struchre is i n f e d  f” a set of examples. The performances of h learning algorithms 
depend crucially on the actual shape of the input distribution. A generic result is the existence 
of a critical number of examples needed for successful leaming. The learning smegies a 
compared with methods different in spirit, such as the estimarion of parameters in a model 
distribution and an information-thedcd approach. 

1. Introduction 

One of the major features of neural networks is their ability to learn from examples [l]. 
In supervised learning the environment provides a set of training inputs together with the 
correct outputs, e.g. the labelling according to a binary classification, available from a 
teacher. From this information the student network might infer the unknown rule, which 
defines the output for any possible input. Various models of supervised learning have been 
studied by means of statistical mechanics, for reviews see e.g. [2-4]. 

In unsupervised learning [I, 5, 61 there is no teacher and only unlabelled inputs are 
available. The task is to infer ,an underlying structure in the data, i.e. to recognize the 
relevant features that allow for a clustering or classification. No obvious simple quality 
measure exists, such as the agreement with the teacher in supervised learning. Therefore 
it is necessary to constitute criteria that enable us to formulate unsupervised learning as an 
optimization process. Only recently has this type of learning been considered in a statistical 
mechanics context [7-111. 

A simple model of an unsupervised learning task is the detection of a single direction 
along which possible inputs form two overlapping ‘clouds’. In the following this stmcture 
is imposed by generating data according to a specific probability distribution (section 2). 
Its parameters allow us to shape the clusters and thus model different situations that might 
occur in real world problems in a similar manner. 

The learning strategies are based on the optimization of intuitive objective functions 
(section 3): the maximization of the output variance and the search for separating gaps 
between the clusters. These intuitive approaches make no use of any a priori knowledge 
about the inputs. The specifically chosen distribution is only an example for which the 
typical properties of the learning prescriptions can be studied. This is done by use of the 
replica method [12], in analogy with the theory of supervised learning. 
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The results (section 4). although obtained for a specific model, demonstrate general 
difficulties that might occur in any unsupervised learning problem. For instance, the 
chosen objective function might be inappropriate for the unknown structure to be detected. 
Furthermore, even though a suitable prescription is used, successful learning can require a 
minimal number of example inputs. 

The discussion in section 5 also compares with approaches different in spirit, such as 
the estimation of parameters in a model distribution or the choice of a more sophisticated 
objective function based on information theory. 

2. The model data 

We consider N-dimensional random inputs E” E. RN, distributed according to two Gaussian 
clouds centred around = k ( p / f i ) B ,  where B is an N-dimensional vector with B’ = N. 
The distribution of the overlaps 

is taken to have a double peak structure 
1 1 

p ( h ~ )  = -1 exp [-z(hh - p )  

where p is called the separation of the clouds and the width of a single peak is set to 1. 

inputs according to 
As an illustrative example one might consider binary Bj = rtl and generate independent 

P(u”)  = $(U” - 1) + S(0” + l)] 
where the dummy variables U” indicate which cloud E” belongs to. Note that the correlations 
introduced among the patterns are a factor of U ( l / f i )  weaker than in thezase of biased 
patterns [13], where xi 5; = U ( N ) .  The distribution P ( h L  = ( l / f i ) B .  E”) as given in 
(2) follows by use of the central limit theorem for N + 00. 

Accordingly, the distribution of the projections on any direction perpendicular to B 
would be a single Gaussian with zero mean and unit variance. Thus, (3) results in clouds 
which are spherically symmetric about their respective centres. 

The shape of the clouds can be modified by adding abitraq contributions from the 
subspace orthogonal to B without changing the hYg. Therefore we consider in the following 
inputs with random components given by 

where y z 0. 

( l / N ) J .  B = R ae  distributed according to the joint density 
Their overlaps hyB and h; = ( l / f l ) J  . E“ for a vector J t with J ’ ~  = N and 

For R = 0, i.e. J I B ,  this density factorizes and we get the independent P ( h b )  of (2) and 
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Thus the parameter y controls the width in the orthogonal subspace: ((h~)2)R,~ = y2. Here 
and in the following (. . . ) R  denotes an average over (5). A value of y < 1 yields a higher 
density close to the symmetry-axis B, the clouds form proIate 'cigars', whereas y > 1 
results in an oblate shape (N-dimensional 'pancakes'). Together with the separation p. the 
parameter y will determine how well the relevant direction B can be detected. 

It is important to note that our results would also hold for the equivalent continuous 
version of (3) [IO], yielding the same P R ( ~ ; ,  h k ) .  The discreteness of B and the inputs is 
never explicitely used in the learning process, there is no such apriort knowledge assumed, 
see the discussion in section 5. 

3. Learning strategies 

In our model learning is the choice of a direction J according to a specific criterion. In the 
following we introduce and discuss two such criteria. For a given set of p = UN example 
inputs, J is taken to minimize a corresponding objective function. The success of learning, 
however, is measured by the resulting overlap R = N-I.7. B. 

3.1. M m ' m l  variance 

In many cases one may expect that directions in which the data varies a lot contain much 
information about an underlying smcture (see also the discussion in the last section). The 
search for maximal variance is a common strategy for obtaining meaningful directions, 
especially for high-dimensional data sets. It is most often referred to as principal component 
analysis [l,  141. 

The corresponding objective function is 

In a geometric interpretation this coFesponds to maximizing the mean square distance of the 
input patterns from the hyperplane perpendicular to the vector J ,  which separates two classes 
of patterns. There exist iterative learning algorithms, e.g. Oja's rule or its modifications 
11, 141, which indeed minimize H. In our case of zero-mean data the minimum of H 
is given by the normalized eigenvector J corresponding to the largest eigenvalue of the 
correlation matrix c = ER, 5" . E"*. ~n the context of a linear perceptron unit this is 
equivalent to a maximization of its output variance [lS]. 

Of course we expect this strategy to work well whenever B is indeed the direction of 
maximal variance in the underlying distribution equation (4). 

3.2. Maxim1 stability 

Maximal stability aims at finding the direction in which the largest gap between two classes 
of examples can be found. The class membership is not predetermined and can be adjusted 
to yield a bigger gap. 

Maximal stability was originally used to achieve noise tolerant classifications in 
supervised learning with a threshold perceptron [13, 161. An objective function associated 
with this criterion is 
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and the maximal stability is the largest value of K for which H can be made zero. 
The geometric interpretation of this strategy is to maximize the distance of the pattern 

closest to a separating plane through the origin. 
The application of maximal stability learning seems to be reasonable in our case, because 

the probability density equation (5) in the vincinity of the origin is minimal along the 
direction B. Therefore we expect B to be the distinguished direction with respect to 
maximal stability. 

Moreover the maximum stability strategy has proven to infer an unknown input-output 
relation very well from labelled examples [In. This generalization ability in supervised 
learning need not translate to unsupervised learning, since the information a labelled example 
provides about the teacher is different from the information an unlabelled example contains. 
However, the effect of this difference is not trivial as we will show in the course of this 
paper. 

The minimization of H, equation (8), requires an optimization with respect to the 
discrete class memberships. Therefore one would have to use a very time consuming 
simulated annealing procedure or-if satisfied with suboptimal stabilities--faster methods 
described in [16]. 

Nevertheless the results of both learning criteria can be studied analytically by 
interpreting each objective function as the energy H ( J )  of an interacting system of N 
degrees of freedom. The corresponding partition function 

M Biehl and A Mietzner 

will be studied in the thermodynamic limit N --f 03, p = orN. The limit p + 03 yields 
the ground state and thus the minimum of the objective function [23]. Assuming that the 
free energy F = -(l/p) In Z is self-averaging with respect to the distribution of inputs (4), 
the order parameter R can be obtained by means of a saddlepoint integration using the 
replica-method [12]. We assumed replica-symmetry at the saddle-point. The calculation is 
outlined in the appendix. 

4. Results 

4.1. Mmimal variance 

The saddle-point equations can be solved algebraically and yield the following dependence 
of R on the number of patterns presented, given the separation p and the orthogonal width 
y of the peaks: 

where 0 := (1 + pz) /y2  - 1 depends only on the relation between the variances (1 + p2) 
along B and (y2 )  perpendicular to B. Therefore B measures how distinguished B is with 
respect to maximal variance. 

Note, that the two solutions zkR are equivalent, since there is no reason to distinguish 
between the recognition of B and -B. 

For a specific value of p, figure 1 shows IRI versus (Y for various y according to (10) 
together with the results of simulations. Finitesize effects are rather drastic due to the 
‘weak bias’ p / f i  in the pattern distribution. A careful finite-size scaling confirms our 
result very well, assuming corrections of order O(l/J?ii) for the value of I R 1. 
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Figure 1. Absolute value of R versus a for the maximal-variance smtegy. The curver; are for a 
separation p = 1 and four different values of the mihogonal width, Simulations were performed 
with N = 1000 or N = 500 (for a > 2), respectively. The results were averaged over 100 
independent runs and standard ermr bars would be approximately the size of the symbols. A 
,careful finite-size scaling confirms the analytical predictions very we& note that the typical value 
of I R I of a randomly chosen J is of the order N-'D TC 0.03 for N = 1WO. 

The vector B can only be recognized, if it coincides with the direction of largest variance 
within the distribution (0 t 0). Even in this case, it remains unrevealed ( R  = 0) unless 
a certain critical number of examples aC = 1/02 has been presented. The dependence 
of the critical number of examples on the parameters of the distribution is plotted in 
figure 2. Above CY,, R will increase monotonically with CY as the underlying structure 
becomes increasingly evident. In the l i t  CY + CO pefiect recognition is achieved as 
I R I- 1 - ( 1 / 2 p 2 a )  approaches 1. 

Note that if 6 < 0, the largest eigenvalue of C (section 3.1) for CY + cc is (N - 1)- 
degenerate and corresponds to the entire subspace orthogonal to B. Therefore the search 
for subsequent principal components would not be helpful unless all N eigenvectors were 
determined. 

For fixed y the typical number needed for successful learning scales l i e  l / p 2 ,  which 
coincides with a recent result [18] for supervised learning from similar data in the large 
separation limit p + cc. In this limit the additional information a teacher provides is 
redundant because the structure in the data is self-evident. 

4.2. Maximal stability 

We obtain.the replica-symmetric saddle-point equations 
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Figure 2. critical number of examples ac versus the separation p of the peaks in the dam to be 
leamed. The dotted lines correspond to the nwimal wiance sh'ategy, whereas the closed lines 
represent the maximal slabfity result From left to right the widths v were taken to be 0.8. 2.0 
and 6.0, respectively. 

where ,5 := p l y ,  B := K / Y  and U' := 1 - (1 - y-*)R* which have to be solved numerically 
and yield the optimal stability and the overlap R for given a. The results for K will not be 
discussed here, see [16]. 

Again R = 0 solves the saddle-point equations and i zR  are equivalent. Depending on 
the parameters a, p and y one or even two additional solutions I R If 0 exist. The solution 
with the largest K has to be interpreted as the actual result of the maximal stability criterion. 

In figure 3 the results for 1 RI are plotted versus a for various widths y and separations p.  
Again there exists a critical number of examples ac, where monotonic improvement of 
recognition begins. Quite contrary to the preceding criterion the detection of B is not 
perfect, even in the l i t  a --f CO, where the set of examples is most likely to reflect the 
features of the underlying distribution. We obtain 

IRlcwm= (12) 

where z := pz/(l - y-'). Obviously B itself is not the 'best' vector with respect to 
stability. Only for an infinite separation p + 00 or extreme cigars ( y  = 0) is recognition 
perfect. 

Equation (12) is only valid for parameters p and y that allow recognition at all. 
Andoguous to B > 0 for the maximal variance criterion we find a corresponding minimal 
p,""(y) for the maximal stability strategy. For various (Y p&) is shown for both criteria 
in figure 4. 

An interesting effect in I RI (a) can be observed above ys N 1.35, where the examples 
are so widely spread that two locally maximal gaps can occur. Then the saddle-point 
equations have three solutions, corresponding to three extrema of K ( I  R I). One maximum 
at RO = 0, a minimum at RI # 0, and another maximum at R:! > R I .  So the two maxima 

1 - (1/6(y2 - 1))[z - 5 + sign (1 - y)J(z - 5)' - 241 for y # 1 

L m  for y = 1 



Unsupervised structure recognition 1891 

1 .o 

0.8 

0.2 

0.0 
0 1 2 3 4 5 

cy 

0 2 4 6 8 10 
a 

F i m  3. (a) lRI versus OT for a separation of p = 2.6 and width y = 1.56. The dotted 
mrve corresponds to Le result of the maximal variance strategy. The full CurVe is the physical 
solution of the maximal stability criterion. The broken curve represenk a local maximum of 
K(I RI),  whereas the chain c w e  marks the a, where the R = 0 solution becomes a minimum 
of K ( I  R I). The corresponding results of the Hopf-Tron algorithm are represented by: first step. 
low stability, * and second step, high stability, A. Simulations weze done for N = 400, the 
ermr bars depict the standard mor for 2LL25 runs (b) Just as (a), but with p = 10, y = 8.5 and 
10 mlls for L( 2 4. For both parameter sek the maximal vadance strategy approaches I R I= 1. 
whereas the maximal stability cnterlon tends to a value of I R I< 1 fora + 03 as given by (12). 
Note, that the performance of the Hopf-Tron algorithm is comparable to whichever smtegy is 
more successful. 

Rz and Ro = 0 compete for the highest stability. In that case recognition skirts out with a 
jump from R = 0 to a finite R, when the critical number of examples is presented. This 
critical number, where I R I# 0 becomes the global maximum of stability, i.e. the 'physical' 
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Figure 4. The minimally necessary separation pE vents width y for various U. The dotted 
curves correspond to the maximal variance strategy, the full curves to the physical solution of 
the maximal stabirity criterion and the chain curves io the separations, where R = 0 is no longer 
a maximum of K ( I  RI). In evely family of curves the upper ones correspond to U = 1.0. the 
ones in the middle to U = 4.0 and the lowest ones to U -+ m. For values of y .  where the full 
and chain curves are already split, Rcognition by the maximal stability criterion takes place as a 
first-order hansition. Only for fairly high y and U there exist separarions p, where the maximal 
stability criterion is able to start detecting the underlying distribution. whereas maximal variance 
does not. 

solution, will be denoted by a,. We will not discuss the values of ct for the appearance of 
a local maximum at [RI# 0 and for the I R I# 0 solution becoming the only maximum, see 
figure 3. 

Figure 4 depicts the region in parameter space of p and y ,  where a first order transition 
in understanding can be found. For given (Y it is the region between the full and broken 
curves, where K still has a local maximum at R = 0. Though this is not the physical 
solution, an algorithm l i e  simulated annealing might be trapped in this local maximum. 

Unfortunately no simple algorithm exists to achieve maximal stability for a given 
set of examples in the unsupervised case. Thus the above results cannot be explicitely 
confirmed by simulations. However simulations were performed using the so-called Hopf- 
Tron algorithm [16], which yields sub-optimal yet high stabilities. This algorithm can be 
subdivided into two stages. The first one obtains a classification U" = sign (JH . e") of fairly 
high stability, that can be defined through a vector of Hebbian form JH = N-'. E:=, ru". 
In a second step this labelling is held fixed and the corresponding direction J p  of optimal 
stability is determined by means of supervised learning 119-211. This second step 
significantly increases the stability. 

Depending on the distribution's parameters, the values for I RH 1 and I Rp 1 respectively 
differ more or less from the calculated results of the maximal stability criterion, figure 3. 
Nevertheless the increase of stability as achieved by the second stage of the algorithm always 
moves I Rp I in the direction of our maximal stability result. We suspect, however, that our 
analytic result concerning optimal skbility is not exact and that replica-symmetry-breaking 
[ 121 must be considered. Details will be published elsewhere. 
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4.3. Comparison 

We found two important basic differences between the criteria of maximal variance and 
maximal stability. 

Firstly, in the limit a -+ 03, where the input examples represent the true structure of 
the data, maximal variance perfectly recognizes the vector B, whenever it is indeed the 
direction of maximal width in the underlying distribution. Maximal stability on the other 
hand will-apart from two unnatural extreme shapes-not perfectly detect B, no matter 
how many examples are presented. This is possible because the underlying distribution 
exhibits no aaual gap along B, neither does any other direction: K(OI + CO) = 0. Thus R 
is the result of two competing influences: the probability for having pattems close to the 
origin is low for large values of R, but on the other hand a smaller R corresponds to a 
larger subspace of directions that can be searched for the biggest gap. 

Secondly, the two strategies require very different critical numbers of examples to initiate 
recognition, which certainly is most important in situations where only a limited number 
of examples is available. Figure 2 gives a comparison between a&, y )  for both criteria. 
For some regions in the parameter space of p ,  y the underlying structure becomes noticable 
to the maximal stability criterion before it does for the maximal variance criterion and 
vice versa. The distribution being fairly flat ( y  1.35) is a precondition for the maximal 
stability to have the possibility of being superior. However, we found maximal variance to 
be the better strategy in most cases. 

For practical applications this indicates no necessity for the development of an algorithm 
that indeed achieves maximal stability (if we are not specifically interested in the stability 
itselfj. This was confirmed by all the simulations we performed with the Hopf-Tron 
algorithm. Hopf-Tron inferred the underlying structure better than figure 3(a) or as good 
as figure 3(b) our calculation predicted for the physical solution of the maximal stability 
criterion. Note that in figure 3(a) even below the critical number of examples a&. y )  the 
relevant direction was almost perfecfly detected. For increasing flatness y the Hopf-Tron 
even outperformed the maximal variance strategy. 

For a completely unknown structure it seems promising to use various strategies, e.g. 
maximal variance and the Hopf-Tron algorithm, and compare the results. 

5. Discussion 

We have studied unsupervised learning based on the use of ad hoc objective functions. As 
a simple specific example we have considered data drawn from two overlapping Gaussian 
clouds in N-space. Our results reflect some generic problems that can occur in unsupervised 
learning or clustering 151. 

It is intuitively clear that the more examples are provided, the better the structure in 
the data can be detected. Our analysis shows that even a critical number can exist, below 
which successful learning is impossible. This behaviour depends crucially on the chosen 
learning prescription and, of course, on how pronounced the structure. of the data is. 

As a rather drastic example we have shown that a fairly reasonable strategy, i.e. looking 
for the largest gap separating clusters of examples, might be of little use if the true input 
distribution reveals no such gaps. This does not indicate, however, that the stability criterion 
will be inappropriate in general, it rather depends on the structure of the input distribution. 
For example the Hopf-Tron algorithm [161, originating from the idea of gap search, proved 
to be very successful. 

The maximal variance strategy seems to be a natural choice for the considered data. 
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Yet it is not guaranteed that it will extract the interesting information in any case, as we 
have demonstrated for large y .  

A problem common to all types of learning, supervised as well as unsupervised, is that 
of a priori knowledge or assumptions on the complexity of the task. If we knew about the 
type of underlying shuchue we could choose our learning strategy accordingly. 

Recently, Watkin and Nadal [lo] studied unsupervised learning based on the estimation 
of parameters in a model distribution 151. If it is assumed that the inputs are drawn from 
a distribution of the form (3) or its continuous equivalent, the model parameters J can be 
chosen in an optimal way, so as to maximize the expected value of R. 

Watkin and Nadal point out that knowledge about the discreteness of a vector B E 
[+l, -IlN leads to much faster learning. For continuous B and spherical clusters ( y  = I), 
the optimal procedure tums out to be only slightly better than the search for maximal 
variance in continuous J-space. In particular, the same minimal number of examples ixcN 
is needed for successful learning. 

Of course, if a priori knowledge is available, fitting an appropriate model should be 
superior to any ad hoc principle. On the other hand, problems will arise if the assumptions 
made on the inpuw were wrong [IO]. 

Strategies like the ones discussed in this paper can be useful if the knowledge is very 
poor. If, for example, the me distribution could be a mixture of three or more Gaussians 
as well, it is still wtely that the maximal variance strategy would extract some relevant 
information from the examples. 

As a last point we briefly discuss an information-theoretic approach. Linsker’s infomax 
principle [22] suggests that we choose J such that the value of hJ contains on average as 
much information about the input as possible. This mutual information I (J) is, for such 
a deterministic inputloutput relation, simply the entropy of the output, not knowing the 
input [22]. Would such a more sophisticated criterion give ‘better’ results than the simple 
maximum-variance principle? 

Consider a vector J with a given value of R. The output entropy averaged over the 
distribution of inputs depends only on R :  

I(R) = - dh~P~(hJ) In[Pi?(hJ) l .  (13) 

A maximization of this quantity gives the overlap RI for the dmction of largest mutual 
information. This is to be compared with the value R corresponding to the largest ( h i ) R  
as is achieved by the maximal variance strategy for a+ W. Figure 5 shows the numerical 
results for two values of p in dependence o f y .  

as found in section 3 
for maximal variance. This is due to the fact that for R s 0 the distribution PR(hJ) is 
approximately Gaussian and its entropy is given by 

I(R) = i ( 1  +h1[2n(h:)~]) (14) 
which is a monotonic function of the variance. 

Only in a certain range of subcritical y do the resulting overlaps differ, indicating that 
some intermediate direction preserves more information on the inputs than B itself. This 
difference is particularly pronounced for large p where the distribution for non-zero R 
differs significantly from a Gaussian. For small y maximal mutual information coincides 
with maximal width again. Details will be discussed elsewhere. 

Further studies should incorporate more realistic situations, e.g. more complex structures 
with a higher number of clusters to detect [lo]. In this context it might be interesting to 

-m 7 
Note that RI = 0 above the same critical value J+ = 
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0.0 0.5 , 1.0 1.5 ~ 2.0 2.5 
7 

Figure 5. Comparison of the direction of largest information content (see section 5) and the 
direction of mest variance in the model data for two different sepmtions p.  For most values 
of y the corresponding overlaps I R I coincide, in padcular R becomes zero at the same value 
yc = (1 + p"'/$. 

study strategies similar to what is known as competitive learning [l]. The maximization 
of the mutual information [22] might also be very useful in a more general situation and 
deserves further investigation. 
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Appendix A. 

We shall calculate (In Z) from (9) using the replica trick, where (. . .) denotes the average 
over the inputs. The calculation resembles the ones of [13, 17, 23,241 and is only sketched 

For simplicity we consider the case y = 1, i.e. t,! = c,! from (3). The replicated 
in the following. A 

partition function reads 
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Here a denotes the replica index, The energy contribution of a single input example in 
replicon a is 
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( A 3  
for the maximal variance strategy 
for optimal stability. 

2 
g(h,Y) = { -I"") 

0 K- I hi I) 
We can now average over the inputs 9 according to (3) and obtain 

where 

- iPu c x a R "  - EqabXaXb - 4 F X z ] .  
c? ocb ' 

In the replica-symmetric ansatz qnb = q,  Rn = R we get, after performing the integrals 
over the .I; and x., 

where U = p(1-q) is assumed to be U(1) in the simultanuous limit q + 1, ,9+ CO [23]. 
This limit corresponds to forcing the system into a unique ground state. 

The integral over h is for @ -+ 00 dominated by the maximal integrand and can be 
performed according to the choice of g(h) [24], yielding the respective ground state (free) 
energies F. 

For y # 1 the calculation is done in complete analogy, averaging over the e, but with 
a modified 6-function defining 

in (Al). We get for the maximal variance strategy 
-F 1 - R 2  yZ+(1-y2+pZ)R2 

1 - 2yZu 
+a -=- 

N 2U 
and for the learning with maximal stability we find 

with the abreviations 

The analytic solution (10) and the saddle-point equations (11) follow from the condition 
a F / a v  = a F j a R  = 0. 
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